Data Science, ML and Analytics Engineering

Deep dive into LLM Part Two

In the first part we discussed the practical part of deep dive into LLM.

In this part we will talk about key papers that will help in understanding LLM and passing interviews =) But more on that later.

It all starts with the first GPT

Then I recommend reading the paper about InstructGPT. The topic of training with feedback from a person is discussed there.

Then there are a couple of interesting papers:
SELF-INSTRUCT
Information Retrieval with Contrastive Learning

Then I recommend that you familiarize yourself with two truly iconic papers: LORA and QLORA, which solve the following problems:
– learning speed
– computing resources
– memory efficiency

Two more equally important paperpers are PPO and DPO. Understanding these works will help in reward modeling.

And finally:
Switch Transformers  – as a base Mixtures of experts
Mixtral of Experts  – as Open Source SOTA
Llama 2

Happy reading everyone

Share it

If you liked the article - subscribe to my channel in the telegram https://t.me/renat_alimbekov


Other entries in this category: